Lecture 1: Normal Form Games: Refinements and Correlated Equilibrium

Albert Banal-Estanol

April 2006
Today’s Lecture

• Trembling hand perfect equilibrium:
 Motivation, definition and examples

• Proper equilibrium:
 Motivation and examples

• Correlated equilibrium:
 Motivation, definition and examples
Motivation for "Trembling Hands"

- Rationality does not rule out weakly dominated strategies
- In fact, NE can include weakly dominated strategies
- Example: (D,R) in

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 1</td>
<td>0, -3</td>
</tr>
<tr>
<td>D</td>
<td>-3, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- But should we expect players to play weakly dominated strategies?
- Players should be completely sure of the choice of the others
- But, what if there is some risk that another player makes a "mistake"?
Trembling Hand Perfection

- For $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i()\}]$ define...
 for each i and s_i, $\varepsilon_i(s_i) \in (0, 1)$;
 $\Delta_\varepsilon(S_i) = \{\sigma_i : \sigma_i(s_i) \geq \varepsilon_i(s_i) \text{ for all } s_i \in S_i \text{ and } \sum s_i \sigma_i(s_i) = 1\}$;
 "the perturbed game" as $\Gamma_\varepsilon = [I, \{\Delta_\varepsilon(S_i)\}, \{u_i()\}]$

- Interpretation:
 each strategy s_i is played with some minimal probability
 this is the unavoidable probability of a mistake

- A NE σ is **trembling hand perfect** if there is some sequence of perturbed games
 $\{\Gamma_{\varepsilon_k}\}_{k=1}^{\infty}$ converging to Γ_N for which there is some associated sequence of NE
 $\{\sigma^k\}_{k=1}^{\infty}$ converging to σ
Alternative Definition and Properties

- Problem: need to compute equilibria of many possible perturbed games

- Proposition: \(\sigma \) is *trembling hand perfect* if and only if there is a sequence of totally mixed strategy profiles \(\sigma^k \) such that \(\sigma^k \rightarrow \sigma \) and, for all \(i \) and \(k \), \(\sigma_i \) is a best response to every \(\sigma^k_{-i} \)

- Counterexample: \((D,R)\) in the previous example

- Corollary: \(\sigma_i \) in a trembling-hand perfect equilibrium cannot be weakly dominated. No weakly dominated pure strategy can be played with positive probability

- Remark: the converse (any NE not involving weakly dominated strategies is trembling hand perfect) is true for two-player games but not for more than two
Existence

- Proposition: Every $\Gamma_N = [I, \{\Delta(S_i)\}, \{u_i()\}]$ with finite strategy sets S_i has a trembling-hand perfect equilibrium

- Corollary: At least there is a NE in which no player plays any weakly dominated strategy with positive probability

- Counterexample: Bertrand-Nash equilibrium allowing for continuous set of prices
Proper Equilibrium

• Example:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>D</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

- NE: (U,L), (D,R). THP: (U,L) but not (D,R) (weakly dominated)

• But adding two weakly dominated strategies:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 1</td>
<td>0, 0</td>
<td>-9, -9</td>
</tr>
<tr>
<td>M</td>
<td>0, 0</td>
<td>0, 0</td>
<td>-7, -7</td>
</tr>
<tr>
<td>D</td>
<td>-9,-9</td>
<td>-7,-7</td>
<td>-7, -7</td>
</tr>
</tbody>
</table>

- NE: (U,L), (M,M), (D,R). THP: (U,L), (M,M)
• (M,M) is THP:
 e.g. consider the totally mixed \((\varepsilon, 1 - 2\varepsilon, \varepsilon)\) for both
 for player 1 (or 2), deviating to \(U\) (or \(L\)): \((\varepsilon - 9\varepsilon) - (-7\varepsilon) = -\varepsilon < 0\)

• Idea of proper equilibrium: more likely to tremble to better strategies:
 second-best actions assigned at most \(\varepsilon\) times the probability of third-best actions,
 fourth-best actions assigned at most \(\varepsilon\) times the probability of third-best actions,
 etc.

• (M,M) is not proper equilibrium:
 e.g. if player 2 puts weight \(\varepsilon\) on \(L\) and \(\varepsilon^2\) on \(R\)
 for player 1, deviating to \(U\): \((\varepsilon - 9\varepsilon^2) - (-7\varepsilon^2) > 0\) for \(\varepsilon\) small

• See Fudenberg and Tirole for a formal definition and properties
Towards Correlated Equilibria

• Example:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9, 9</td>
<td>6, 10</td>
</tr>
<tr>
<td>B</td>
<td>10, 6</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

• Pure and mixed strategy NE:
 - (A, b) with payoffs $(6, 10)$
 - (B, a) with payoffs $(10, 6)$
 - $\left[\left(\frac{6}{7}, \frac{1}{7}\right), \left(\frac{6}{7}, \frac{1}{7}\right)\right]$ with expected payoffs $\approx (8.57, 8.57)$
New Potential Agreement (1)

- First potential agreement:
 appoint a third party to flip a coin and announce "H" or "T"
 play \((A, b)\) if \(H\) and \((B, a)\) if \(T\)
 expected payoffs \((8, 8)\)

- Are these "mutual best responses"?
 If "H", player 1 knows that player 2 plays \(b\), \(A\) is a best response
 If "T", player 1 knows that player 2 plays \(a\), \(B\) is a best response
same for player 2 (game is symmetric)

- Expected payoffs could dominate mixed NE (e.g. change 9s for 8s)
New Potential Agreement (2)

- Second potential agreement:
 ask third party to roll a dice (number n not observed by players) and
 announce player 1 whether n is in $\{1,2\}$ or in $\{3,4,5,6\}$ and
 announce player 2 whether n is in $\{1,2,3,4\}$ or in $\{5,6\}$
 player 1 plays B if $\{1,2\}$ and A if $\{3,4,5,6\}$
 player 2 plays a if $\{1,2,3,4\}$ and b if $\{5,6\}$
 expected payoffs $(8.33, 8.33)$ (still lower than in mixed, but wait...)

- Are these mutual best responses? e.g. for player 1...
 if n is in $\{1,2\}$, she knows that 2 plays a and then B is a best-response
 if n is in $\{3,4,5,6\}$, she gives $\frac{1}{2}$ to both a and b, and then A is a best-response
Correlated Equilibrium: Definition

- Definition in a finite game $\Gamma_N = [I, \{S_i\}, \{u_i()\}]$:
 σ^*, a probability distribution over $S_1 \times ... \times S_I$, is a correlated equilibrium iff for all i and for all s_i chosen with positive probability, s_i solves

 $$\max_{s_i} E_{s_{-i}} \left[u_i(s_i', s_{-i}) \mid s_i, \sigma^* \right]$$

- In the previous second potential agreement, the probability distribution was...

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$1/3$</td>
<td>$1/3$</td>
</tr>
<tr>
<td>B</td>
<td>$1/3$</td>
<td>0</td>
</tr>
</tbody>
</table>
Example (continued)

- More generally, consider the family:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>γ</td>
<td>$(1-\gamma)/2$</td>
</tr>
<tr>
<td>B</td>
<td>$(1-\gamma)/2$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Is it a correlated equilibrium? e.g. for player 1...
 when told to play B, she knows that 2 plays a. B is a best response
 when told to play A, prob of a is $\frac{\gamma}{\gamma+(1-\gamma)/2} = \frac{2\gamma}{1+\gamma}$. A is a best response iff

 $$9 \left(\frac{2\gamma}{1+\gamma} \right) + 6 \left(\frac{1-\gamma}{1+\gamma} \right) \geq 10 \left(\frac{2\gamma}{1+\gamma} \right) + 0 \left(\frac{1-\gamma}{1+\gamma} \right)$$

 or $\gamma \in [0, 3/4]$

- Remarks:
 $\gamma = 0$ corresponds to the previous first potential agreement
 $\gamma = 3/4$ has payoffs $(8.75, 8.75)$, dominating the mixed NE
Mixed NE and Correlated Equilibrium

- Interpretation of a mixed strategy equilibrium:
 players’ randomisations are independent
 condition decisions on private and independent signals
 e.g. \((1/2, 1/2)\) in matching pennies: choose H if the first step of the day is with your right foot and T if it is with your left one

- Interpretation of correlated equilibrium:
 players’ randomisations may be correlated
 decisions may also be conditioned on a public signal
 e.g. realisation of a flip of a coin in the previous first potential agreement