Lecture 3: Reputation

Albert Banal-Estanol

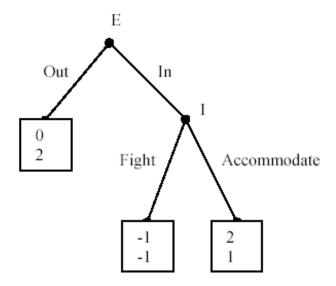
May 2006

Today's Lecture

- In dynamic games of incomplete information, actions can reveal information about players' types
- Knowing this, players have incentives to tailor actions to manipulate inference
- Others anticipate this manipulation
- They attempt to make inference subject to the knowledge that they are being manipulated
- Examples: reputation, signalling, cheap talk

Example

• Another version of the "entry game":



Reputation

- Only plausible outcome (SPNE) is (In, Accommodate)
- In practice, incumbent may fight in order to establish a reputation for toughness
- Definition:

"An individual has reputation if she is expected to behave in a certain way in the current environment because she has behaved similarly in similar environments"

- Model:
 - (a) repeated game
 - (b) facing different opponents at each period

Reputation in the Entry Game

- Suppose that the incumbent plays the game... repeatedly (infinitely), discounting the future at rate δ against a sequence of different opponents appearing only once
- In one SPNE, entrant enters and incumbent accommodates in each period
- Can a tough reputation be established in equilibrium? Consider the following...
- ullet Strategy opponents: if either all opponents stayed out in the past or if the incumbent has never accommodated entry in the past, then play Out otherwise, play In
- ullet Strategy incumbent (if the current opponent enters): if either all opponents stayed out in the past or if the incumbent has never accommodated entry in the past, then play Fight otherwise, play $Acco\, {
 m mod}\, ate$

Reputation in the Entry Game

- Is the previous strategy profile a SPNE?
- ullet Opponent: (a) when either all opponents have stayed out in the past or the incumbent has never accommodated entry: Incumbent will play Fight, therefore Out is the best choice
- Opponent: (b) when some opponent entered and incumbent accommodated: Incumbent will play $Acco \mod ate$, therefore In is the best choice

• Incumbent: (a) when either all opponents have stayed out in the past or the incumbent has never accommodated entry:

Assuming entry occurs, payoff from equilibrium strategy (Fight): $\{-1,2,2,...\}$ since opponents stay Out. Utility of $-1+\frac{2\delta}{1-\delta}$

Assuming entry occurs, payoff from deviation $(Acco \mod ate)$: $\{1,1,1,...\}$, since opponents play In (this is the best deviation). Utility of $\frac{1}{1-\delta}$ Fight is optimal whenever

$$-1+rac{2\delta}{1-\delta}\geqrac{1}{1-\delta}$$
 or $\delta\geqrac{2}{3}$

• Incumbent: (b) when some opponent entered and incumbent accommodated: Regardless of what the incumbent does, all future opponents will play In, therefore the best choice is to $Acco \mod ate$

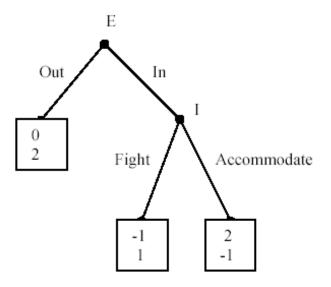
Conclusions

- Incumbent benefits from reputation for toughness (she will fight if someone enters to sustain reputation)
- However, in equilibrium it never fights and does nothing to create or maintain the reputation
- The previous pair is only one of the SPNE of the game. In other SPNE the incumbent does not benefit from reputation
- Impossible to sustain if the game is finitely repeated

Incomplete Information

• Two types of incumbents: weak (W) or strong (S)

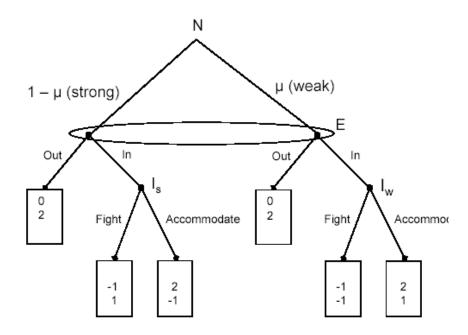
If the incumbent is weak the game is as before. If she is strong...



• SPNE here: (Out, Fight)

Extensive-Form Game

ullet Assume entrant gives probability μ to weak $(1-\mu$ to strong)

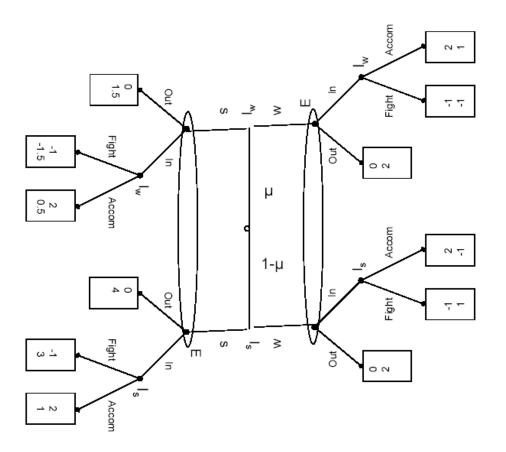


ullet SPNE: Entrant enters iff $\mu \geq \frac{1}{3}$, Fight if strong, $Acco\ \mathrm{mod}\ ate$ if weak

Reputation in Incomplete Information

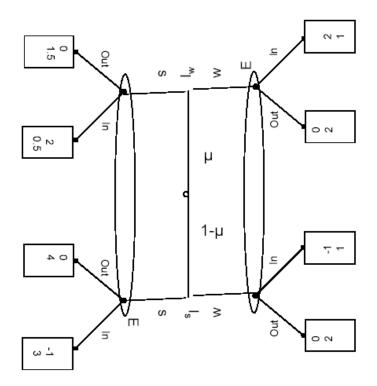
- Incumbent has been in the industry for a while
- Entrant looks at past behaviour to make inferences about incumbent's type
- Incumbent know this and may behave to mislead entrants
- Simple model: before the entry game, incumbent can raid another market (s, acting strong) or not (w, acting weak)
- Payoffs:

in first period: for I_s 2 from s and 0 from w; for I_w -1/2 from s and 0 from w in second period, as before assume no discounting



Sequential Equilibria

• Since sequential equilibrium is subgame perfect...



Sequential Equilibria for $\mu < 1/3$

• Claim: there is a SE in which... both I_w and I_s play s E plays In if I has played w and Out if I has played supon w, E believes she faces I_w with prob 1 (beliefs off-equilibrium-path)

• Proof:

s is optimal for I_w : she obtains 1.5 from s and 1 from w s is optimal for I_s : she obtains 4 from s and 1 from s and 1 from s optimal for s: she obtains s optimal from s optimal for s: she obtains s optimal from s optimal for s: she obtains 2 from s optimal from s optimal for s: she obtains 2 from s optimal from s optimal for s: she obtains 2 from s optimal 0 from s optimal for s: she obtains 2 from s optimal 0 from s optimal for s optimal for s optimal for s optimal from s optimal from s optimal for s optimal for s optimal from s optimal s optimal from s optimal s optimal from s op

$$\Pr{ob}(I = I_w \mid w) = \frac{\mu \varepsilon}{\mu \varepsilon + (1 - \mu)\varepsilon^2}$$
 which converges to 1 as $\varepsilon \to 0$

Sequential Equilibria for $\mu < 1/3$ (2)

- Claim: there is no other SE. Proof:
- ullet Is plays s with certainty: lowest payoff if it plays s is 3 and highest for w is 2
- I_w cannot play w with certainty: s would indicate I_s with prob. 1 and E would play Out. w would indicate I_w with prob. 1 and E would play In. But then deviating to s, I_w would increase her payoff from 1 to 1.5
- I_w cannot mix between w and s: I_w would mix if she were indifferent. Upon observing w, E would infer that I was I_w . E would choose In, and E would receive a payoff of 1. Upon s, E would infer that I was I_w with prob. $\lambda < \mu < 1/3$ and would choose Out, which means that E would receive 1.5. Contradiction!!
- Conclusion: I_w imitates I_s to deter entry I_w succeeds because E fears that incumbent might be strong when observing s I_w acts as if she was strong to disguise her true type

Sequential Equilibria for $\mu > 1/3$

- Claim: there is no pure strategy SE. Proof: again I_s plays s with certainty and I_w cannot play w with certainty I_w cannot play s with certainty: Upon s, E would infer that I is I_w with prob. $\mu > 1/3$ and E would play In. Thus, I_w , by playing s gets 0.5 and by playing s, she gets no less than 1. She would have incentives to deviate
- Constructing the unique mixed strategy SE: again I_s plays s with certainty if I_w mixes between s and w, E will infer that I is I_w upon w and play In to make I_w indifferent between s and w, E should play In with prob 1/2 suppose that I_w plays s with prob ϕ , and $\phi = (1-\mu)/2\mu$ (given that $1/3 \le \mu \le 1$ then $1 \ge \phi \ge 0$) the posterior belief upon s is $\Pr(I = I_w \mid m) = \frac{\phi\mu}{1-\mu+\phi\mu} = \frac{1}{3}$

Sequential Equilibria for $\mu > 1/3$ (2)

- ullet Conclusion: I_w deters entry in some cases by randomly imitating I_s deterrence is not complete I_s is hurt by this imitation probability of imitation declines with μ but effect on I_s does not change with μ
- Exercise: what happens for $\mu = 1/3$?
- See Fudenberg and Tirole for other reputation games