
S100 (Game Theory) Albert Banal-Estanol

Problem Set 3
1.- (More on NE and WPBE) For the game represented in Figure 1:
a) Find the Nash equilibria in pure strategies.
b) Find the weak perfect Bayesian equilibria in which each player’s strat-

egy is pure.

2.- (More on WPBE) Find the set of weak sequential equilibria of the
game in Figure 2.

3.- (Making mistakes) Exercise 9.C.7 in Mas-Colell et al. [Hint: assume
that you have a WPBE and consider, in turn, that in this WPBE player
1 plays B,T and a pure mixed strategy over this two strategies]. Printing
mistake in the book: the WPBE is not unique.

4.- (War game) Consider the following strategic situation. Two opposed
armies are poised to seize an island. Each army’s general can choose either
“attack” or “not attack.” In addition, each army is either “strong” or “weak”
with equal probability (the draws for each army are independent), and an
army’s type is known only to its general. Payoffs are as follows: The island
is worthM if captured. An army can capture the island either by attacking
when its opponent does not or by attacking when its rival does if it is strong
and its rival is weak. If two armies of equal strength both attack, neither
captures the island. An army also has a “cost” of fighting, which is s if it
is strong and w if it is weak, where s < w. There is no cost of attacking if
its rival does not. Identify all pure strategy Bayesian Nash equilibria of this
game.

5.- (Another entry game) Two firms simultaneously decide whether to
enter a market. Firm i’s entry cost is θi ∈ (0,∞). Firms’ entry costs are
private information and are independently drawn from the distribution P
with strictly positive density p. Firm i’s payoff is Πm− θi if it enters but the
other firm does not enter, Πd−θi if both enter and 0 if it does not enter. Πm
and Πd are the monopoly and duopoly profits gross of entry costs and are
common knowledge. Assuming that Πm > Πd, compute a Bayesian Nash
equilibrium.

6.- (Evolutionary Game by Maynard Smith (1991)) Some young animals
expend energy begging for food from their parents- they squawk and bleat
and scream, sometimes extravagantly. Can we expect these demands to
signal their needs accurately? To answer this question, consider the following
game.
A hungry parent has a piece of food that it may give to its offspring or keep

for itself. It does not detect whether its offspring is hungry. In either case,
the offspring may signal that it is hungry to its parent (by squawking, for
example). An animal is stronger and thus produces more offspring (i.e. has
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a higher biological fitness) if it gets the food than if it does not. Normalize
the parent’s strength if it keeps the food to be 1, and denote its strength if
it gives the food to its offspring by S < 1. If the offspring does not squawk,
its strength is 1 if it gets the food, V < 1 if it is not hungry and does not
get the food, and 0 if it is hungry and does not get the food. If the offspring
squawks, its strength is multiplied by the factor 1 − t, where 0 ≤ t ≤ 1
(i.e. squawking may be costly). Denote the degree to which the parent and
offspring are related by r, and take each player’s payoff to be its strength
plus r times the other player’s strength. Evolutionary pressure will lead to
behavior for each player that maximizes that player’s payoff, given the other
player’s behavior.
a) Represent this game of incomplete information as a game of imperfect

information (Bayesian game).
b) Find the conditions on r, in terms of S, V and t, under which the game

has the following weak perfect Bayesian equilibrium ("separating equilib-
rium"): the offspring squawks if and only if it is hungry and the parent
gives it the food if and only if it squawks.
c) Show that if the offspring’s payoff from obtaining the food exceeds her

payoff from not obtaining it, regardless of whether she is hungry (which
means that r < 1−V

1−S ), then the game has such an equilibrium only if t > 0.
That is, in this case an equilibrium exists in which the signal is accurate
only if the signal is costly.
d) Show that if r < 1−S

1−(1−α)V , then the game has the following weak
perfect Bayesian equilibrium ("pooling equilibrium"): the offspring is always
quiet and the parent always keep the food. (For other parameter values, the
game has a pooling equilibrium in which the offspring is always quiet and
the parent always gives the food.)

7.- (Revisiting the War of Attrition, exercise 6 Problem set 1). First we
are going to correct the solution of exercise 6 and show that the set of Nash
equilibrium of the game is (t1, t2) such that either 0 = t1 < t2 and t2 ≥ v1
or 0 = t2 < t1 and t1 ≥ v2. Remarkably, the equilibrium outcomes do not
depend on the valuations of the object. Second, using this example, we are
going to show that in a Nash equilibrium players may use weakly dominated
strategies.
Assume that a pair (t1, t2) is a Nash equilibrium.
(a) Show that t1 6= t2 for any v1, v2.
(b) Show that we cannot have that 0 < t1 < t2 or 0 < t1 < t2 for any v1,

v2.
(c) What conditions need to be satisfied to ensure that 0 = t1 < t2 (or

0 = t2 < t1) is a Nash equilibrium?
(d) What is the set of weakly dominated strategies for each player? Are

some of them strictly dominated as well?
(e) Conclude that in a Nash equilibrium players may use weakly domi-

nated strategies.
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